

View

Online


Export
Citation

RESEARCH ARTICLE |  JULY 25 2024

Graded metamaterial with broadband active controllability
for low-frequency vibration suppression
Yupei Jian  ; Guobiao Hu  ; Lihua Tang   ; Jiawen Xu  ; Deqing Huang  ; Kean Aw 

J. Appl. Phys. 136, 043108 (2024)
https://doi.org/10.1063/5.0218118

 03 August 2024 11:14:43

https://pubs.aip.org/aip/jap/article/136/4/043108/3304737/Graded-metamaterial-with-broadband-active
https://pubs.aip.org/aip/jap/article/136/4/043108/3304737/Graded-metamaterial-with-broadband-active?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0002-8094-0769
javascript:;
https://orcid.org/0000-0002-1288-7564
javascript:;
https://orcid.org/0000-0001-9031-4190
javascript:;
https://orcid.org/0000-0002-5398-0394
javascript:;
https://orcid.org/0000-0002-8185-9030
javascript:;
https://orcid.org/0000-0001-9308-508X
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0218118&domain=pdf&date_stamp=2024-07-25
https://doi.org/10.1063/5.0218118
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2510968&setID=592934&channelID=0&CID=908656&banID=522064375&PID=0&textadID=0&tc=1&rnd=2269377070&scheduleID=2429165&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjap%22%5D&mt=1722683683256321&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjap%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0218118%2F20078283%2F043108_1_5.0218118.pdf&hc=aafa4867d893b08dcc052df556e90f17225c3584&location=


Graded metamaterial with broadband active
controllability for low-frequency vibration
suppression

Cite as: J. Appl. Phys. 136, 043108 (2024); doi: 10.1063/5.0218118

View Online Export Citation CrossMark
Submitted: 9 May 2024 · Accepted: 10 July 2024 ·
Published Online: 25 July 2024

Yupei Jian,1,2 Guobiao Hu,3 Lihua Tang,2,a) Jiawen Xu,4 Deqing Huang,1 and Kean Aw2

AFFILIATIONS

1School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
2Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland 1010, New Zealand
3Internet of Things Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
4School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China

a)Author to whom correspondence should be addressed: l.tang@auckland.ac.nz

ABSTRACT

This paper presents a new class of graded metamaterial beams by leveraging actively controllable resonators (ACR). The metamaterial
comprises a homogeneous host beam that is mounted with negative capacitance shunted piezoelectric cantilever beams, each of which has a
tip mass block. Properly changing the negative capacitances (NCs) in the stiffening/softening shunt circuits can control the formed bandg-
aps, providing greater adjustability and flexibility. Specifically, using modal analysis and considering higher modes of flexural vibrations, the
ACR is simplified to an equivalent lumped parameter system with a correction factor applied to the reaction force. We demonstrate the rela-
tionship between the derived equivalent parameters of the ACR and NC for different circuitry configurations. A finite element model is
built to validate the theoretical models of the ACR and the proposed metamaterial. Subsequently, a grading strategy is proposed to deter-
mine the NC values of ACR arrays for achieving broadband vibration suppression. A mechanical damping enhancement phenomenon that
can contribute to forming an aggregated band is observed when resistances are introduced into the stiffening circuits. Three circuit configu-
rations are examined, i.e., stiffening, softening, and hybrid circuits. The results showed that a proper grading coefficient can effectively sup-
press broadband vibration in the low-frequency range.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0218118

I. INTRODUCTION

The growing demand for energy efficiency and space optimi-
zation in advanced engineering has increased the popularity of
lightweight and high-strength materials/structures. This trend is
particularly evident in the fields of aerospace,1 automobiles,2 and
civil engineering,3,4 where the use of lightweight materials with
high stiffness has become prevalent. Traditional methods, such as
vibration absorbers5 and viscoelastic materials,6 face significant dif-
ficulties in effectively suppressing low-frequency vibrations for
lightweight structures. In recent decades, locally resonant metama-
terials have emerged as a promising approach for mitigating low-
frequency vibrations. Characterized by their periodic structures
incorporating local resonators, locally resonant metamaterials can

suppress sub-wavelength waves by opening locally resonant bandg-
aps. Low-frequency vibration suppression can be realized without
constraints on the lattice constant,7,8 which is an extraordinary
advantage over Bragg scattering-based phononic crystals,9 and
shows great application prospects for structural vibration suppres-
sion of large aircraft, rockets, and ships.10,11 For the sake of brevity,
the term “metamaterial” is used hereafter for locally resonant
metamaterials.

In this domain, considerable focus has been placed on active
metamaterials. Researchers refer to a metamaterial with compo-
nents that can be reconfigured in service as an active metamate-
rial.12,13 The term “active” emphasizes the tunability and
reconfigurability of metamaterials. Generally, by introducing
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reconfigurable components into a metamaterial system, the
bandgap can be actively tuned without necessitating physical alter-
ations to the microstructures, making them suitable for various
vibrational environments. One way to realize it is to integrate smart
materials, such as piezoelectric materials,14,15 magnetorheological
elastomers,16,17 and shape memory alloys,18,19 into the microstruc-
tures of metamaterials, thereby enabling the tuning of bandgaps
through the control of these smart materials. Among these, active
metamaterials based on piezoelectric shunt technology have gar-
nered considerable interest due to their ultra-light additional mass
and wide frequency adjustment range.20,21 By modifying the shunt
circuit, the center frequency of the bandgap can be easily adjusted
from a few tens of hertz to a few kilohertz. However, the bandwidth
of the bandgap when the shunt circuit is fixed is narrow due to the
relatively weak electromechanical coupling between piezoelectric
materials and the underlying structure.22 In some applications,
such as vibration suppression of aerospace structures subjected to
aerodynamic loads23 or offshore structures with ocean environmen-
tal loads,24 a narrower bandgap is not attractive due to the broad-
band nature of the external excitation. To this end, various
advanced shunt circuits have been proposed to enhance the
bandgap strength and width, including negative capacitance (NC)
circuits,25–27 nonlinear electrical networks using synchronized
switching damping on inductors,28,29 and nonlinear capacitor cir-
cuits.30 In addition to improving the shunt circuits, other research-
ers worked on optimizing the configuration of the unit lattice of
metamaterials to widen the bandgap. Graded metamaterials, i.e., a
quasi-periodic metamaterial achieved by gradually varying the con-
figuration of the unit cell, showed potential in enlarging the
bandgap.31,32 Many researchers considered gradually modifying the
geometric/material properties of the local resonators, including the
stiffness/mass of mass-spring resonators,33,34 the height of
Helmholtz resonators,35 and the length of beam-type resonators,36

to broaden the vibration suppression region of metamaterials.
However, it must be mentioned that once these metamaterials are
fabricated, it is difficult to modify their grading configuration. To
deal with this limitation, active metamaterials based on piezoelec-
tric shunt technology, which make them ideal for designing graded
metamaterials, are used. Alshaqaq and Erturk37 designed a graded
metamaterial by attaching piezoelectric arrays connected to differ-
ent impedances obtained in accordance with a grading strategy to a
host structure. Uniformly distributed discrete bandgaps were gener-
ated, forming a wide vibration attenuation region. With the same
concept, Liu et al.38 replaced the resistive-inductive circuit in
Ref. 37 with an NC circuit. It is found that the NC circuit enhanced
the electromechanical coupling. A wide attenuation zone was observed
in the high-frequency region spanning over 7000–11 000 Hz.
Recent studies39,40 have further extended this concept by proposing a
disordered design for impedance values in the shunts by using opti-
mization techniques, which lead to optimal vibration attenuation
performance. In our previous work,41 we analytically and experi-
mentally showcased the broadening effect of the bandgap in a
graded piezoelectric metamaterial induced by geometric variations.
Overall, the aforementioned works achieved broadband vibration
control in the medium-high-frequency range by directly affixing
the shunted piezoelectric cell to the substrate/host structure.
However, our previous experiment41 showed that when the

bandgap is tuned to low-medium frequencies (below 300 Hz), the
bandgap becomes narrow and weak, and non-uniform designs have
limited efficacy in widening the low-frequency bandgap.

The focus of this work is on achieving active control of meta-
materials for broadband vibration suppression in low-frequency
regions. To this end, a graded metamaterial with actively controlla-
ble resonators (ACRs) is designed. The resonator array comprises
piezoelectric cantilever beams shunted to varying NCs. Compared
to conventional configurations, the vibration suppression strength
of the bandgap generated by out-of-phase motions of beam-type
resonators is expected to be significantly stronger. It is known that
when a piezoelectric material is shunted to an NC circuit, its elastic
modulus can be controlled by varying the NC circuit.42–44 Based
on this concept, Chen et al.45 conceptualized a metamaterial with
controllable resonators to actively tune the bandgap. However, only
a qualitative analysis of the effect of the NC circuit on bandgap
tuning has been carried out. Achieving graded metamaterials using
ACRs for broadband low-frequency vibration control faces several
challenges:

(1) Implementing the effective grading pattern for tuning the NC
circuits requires an accurate model of the ACR, which has not
yet been developed.

(2) It is unclear how NC affects the equivalent parameters of an
ACR, which is a composite structure containing NC-shunted
piezoelectric elements.

(3) Different NC values typically have stiffening/softening effects
on piezoelectric components. The difference between employ-
ing ACRs with stiffening or softening effects in the construc-
tion of graded metamaterials is unknown.

This paper addresses the above issues and is structured as
follows. Section II provides an overview of the graded metamaterial
with ACR. The theoretical models of the ACR and the graded
metamaterial after assembling ACRs to the host beam are estab-
lished. Section III analyzes the effect of the NC circuit on the
equivalent parameters of the ACR, based on which a graded strat-
egy for adjusting the NC circuits is proposed. Model validation
using the finite element (FE) method is reported in Sec. IV.
Section V demonstrates the broadband vibration suppression per-
formance of the proposed metamaterial in the low-frequency
region. Conclusive remarks are presented in Sec. VI.

II. THEORETICAL MODELING

Figure 1(a) shows the schematic of a graded metamaterial
system comprising a host beam equipped with 2s + 1 beam-type
actively controllable resonators (ACRs) arranged periodically. A
locally resonant bandgap is formed when subjected to flexural
waves, as the parasitic beams generate “cancellation” reaction forces
at the roots due to out-of-plane motions. To counter the undesired
torsional motions, ACRs are mounted in pairs on both sides in
symmetry to maintain force balance. A closer view of the ACR is
presented in Fig. 1(b), which shows a small cantilever beam. Two
piezoelectric patches of lead zirconate titanate (PZT) with identical
pole directions partially cover the top and bottom of the cantilever
beam from the root. To reduce the fundamental natural frequency
of ACRs, a homogeneous mass block Mt is attached to the tip end.
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An NC with impedance Z = 1/(iωCN) is shunted to the PZT
patches. The NC shunting techniques can increase or decrease the
elastic modulus of the shunted PZT and have been applied in a
variety of fields. For instance, Kuchibhatla and Leamy46 integrated
NC circuits onto valley-Hall topological insulators to achieve recon-
figurable interface states. In our work, NC can actively change the
physical properties of the ACR, allowing the ACR to be treated as
an electromechanical resonator. Since the impedance of an actual
capacitor cannot be negative, a common implementation of NC is
chosen here, i.e., an analog circuit based on operational amplifiers
(OP-AMPs),27 to represent the NC, as shown in Fig. 1(b). Note
that the OP-AMP in Fig. 1(b) is considered ideal so that the
desired NC value CN ¼ �R1C1/R2 can be obtained. Issues arising
from the practical OP-AMP will be discussed in Sec. III B. In this
work, the NC shunted to each ACR varies based on a grading
design strategy, which will be elaborated in Sec. III C. The imped-
ances assigned to different ACRs are denoted by Zj, j = 1,
2,…, s + 1,…, 2s + 1, as shown in Fig. 1(a).

A. Equivalent lumped model of an actively
controllable resonator

The ACR shown in Fig. 1(b) can be modeled as a SDOF
(Single Degree of Freedom) system with equivalent stiffness k and
mass m based on Hooke’s law,47,48

m ¼ 33
140

Mc þMt , k ¼ 3EIeff
L3s

, (1)

where Mc and EIeff are the mass and effective bending stiffness of
the composite beam, respectively. Ls = L1 + L2 is the length of the
substrate of the ACR. In real-life applications, the length of the
ACR is limited due to two factors: (1) The piezoelectric patch
should cover a large substrate area to change the overall modulus
effectively; and (2) Excessively long piezoelectric patches are prone
to break. Consequently, Eq. (1) incurs significant errors for rela-
tively short beams, as the mass block dimensions are not negligible
compared to the cantilever beam length and, thus, can no longer
be regarded as a point mass. Since even a minor adjustment to the
negative capacitance value leads to a substantial change in the
equivalent parameters of the ACR, the accuracy of the simplified
model based on Eq. (1) is insufficient. Achieving precise tuning of
the ACR is challenging in this context. Thus, this paper commences
with developing a refined lumped system model for the ACR using
modal analysis.

The governing equation of the jth ACR can be expressed as

EIa,1
@4wa(x1, t)

@x41
þma,1

@2wa(x1, t)
@t2

¼�ma,1€w(~xj, t),

EIa,2
@4wa(x2, t)

@x42
þma,2

@2wa(x2, t)
@t2

¼�[ma,2þMtδ(x2�L2)]€w(~xj, t),

8>>><
>>>:

(2)

where wa(x, t) and w(~xj, t), respectively, denote the relative beam
deflection of the ACR and the base motion, in which x1 and x2 are
the local coordinates of beam sections with and without PZT cov-
erage, respectively (i.e., 0≤ x1≤ L1, 0≤ x2≤ L2). ~x is the coordinate

FIG. 1. (a) Schematic of a graded metamaterial system attached with ACRs; (b) an enlarged view of the ACR, where NC is represented by an OP-AMP-based analog
circuit.
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of the host beam, and the base motion w(~xj, t) refers to the abso-
lute displacement of the host beam where the jth ACR is mounted.
EIa,n and ma,n, n = 1, 2, respectively, denote the effective bending
stiffness and mass per length of the beam sections 1 and 2 of the
ACR). Mt is the tip mass. dc is the distance from the mass block’s
center of gravity to the beam’s attachment point. Since the mass
block is homogeneous, we have dc=La/2, as shown in Fig. 1(b).
The relevant material parameters in Eq. (2) have been labeled in
Fig. 2.

The equivalent parameters can be obtained as

EIa,1 ¼ Es
bh3s
12

þ Ep(ω)
2b
3

hp þ hs
2

� �3

� h3s
8

 !" #
,

EIa,2 ¼ Es
bh3s
12

,

ma,1 ¼ b(ρshs þ 2ρphp),
ma,2 ¼ bρshs,

8>>>>>>><
>>>>>>>:

(3)

where Es and Ep(ω) stand for Young’s modulus of the cantilever
beam and the PZT patch. ρs and ρp are the mass density of the
beam and the piezoelectric patch. Flexural wave propagation in this
composite beam is considered under the assumption of plane
stress, whereby the effects of shear deformation and rotary inertia
of the beam’s cross section are neglected, leading to the 1D consti-
tutive relation for the PZT patch,49

D3

S1

� �
εT33 d31
d31 sE11

� �
¼ E3

T1

� �
, (4)

where D3 and E3 represent the electrical displacement and the elec-
tric field along the z-direction, respectively. S1 and T1 are the strain
and stress along the x-direction. εT33 is the dielectric constant at
constant strain. d31 is the piezoelectric strain constant. sE11 is the
compliance coefficient at a constant electric field. When shunted to
an external impedance Z, the modulus of the PZT becomes50

Ep(ω) ¼ Eoc
p 1� k231

1þ iωCS
pZ

 !
, (5)

where Eoc
p ¼ Esc

p /(1� k231) is Young’s modulus of the PZT patch
under the open-circuit condition, in which Esc

p ¼ 1/sE11 is Young’s
modulus under the short-circuit condition. k31 is the electrome-
chanical coupling coefficient. CS

p ¼ (2εS33bL1)/hp is the internal

capacitance of the PZT patch at constant strain. To facilitate the
analysis, a negative capacitance ratio (NCR) λ ¼ �CN /CS

p is
defined, and Eq. (5) can be rewritten as

Ep(ω) ¼ Eoc
p 1� k231

1� 1/λ

� �
: (6)

To simplify the ACR as a lumped system, its mode shape and
the natural frequency are first derived. Using the variation-
separation method, the deflection of the composite beam relative to
the host beam can be expressed as

wa,n(xn, t) ¼ fn(xn)η(t), (7)

where fn(xn) is the mode shape of beam section n. η(t) is the
modal coordinate. We first consider the free vibration of the ACR
and omit the force term on the right-hand side of Eq. (2).
Substituting Eq. (7) into the governing equation of free vibration
and neglecting η(t), one can obtain

EIa,n
d4fn(xn)

dx4n
� ω2ma,nfn(xn) ¼ 0: (8)

The general solution of Eq. (8) can be expressed as

fn(xn) ¼ An sin βnxn þ Bn cos βnxn þ Cn sinh βnxn

þ Dn cosh βnxn, (9)

where β4n ¼ (ω2ma,n)/(EIa,n). Considering the boundary conditions
of displacement, rotation angle, bending moment, and shear force
at the clamped end, tip end, and the interface between beam sec-
tions 1 and 2, one can obtain

f1(0)¼ 0,

f0
1(0)¼ 0,

f1(L1)¼f2(0),

f0
1(L1)¼f0

2(0),

8>>><
>>>:

EIa,1f
00
1(L1)¼ EIa,2f

00
2(0),

EIa,1f
000
1 (L1)¼ EIa,2f

000
2 (0),

EIa,2f
00
2(L2)¼ Jtω2f0

2(L2)þMtdcω2f2(L2),

EIa,2f
000
2 (L2)¼�Mtdcω2f0

2(L2)�Mtω2f2(L2),

8>>><
>>>:

(10)

where Jt is the moment of inertia of the mass block about the axis
that passes through the attachment point. Substituting Eq. (9) into
Eq. (10), rewriting it into the matrix form, and forcing the determi-
nant of the coefficient matrix to be zero, we have

(T1N1þT2N3þT3N5þT4N7) (T1N2þT2N4þT3N6þT4N8)

(T5N1þT6N3þT7N5þT8N7) (T5N2þT6N4þT7N6þT8N8)

����
����¼ 0,

(11)FIG. 2. Schematic of the ACR.
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where

Y1 ¼ β1
β2

Y2 ¼EIa,1β21
EIa,2β22

Y3 ¼EIa,1β31
EIa,2β32

8>>>>>>><
>>>>>>>:

N1 ¼ [(Y1þY3)cos β1L1� (Y1�Y3)cosh β1L1]/2,

N2 ¼�[(Y3þY1)sin β1L1þ (Y3�Y1)sinh β1L1]/2,

N3 ¼ [(1þY2)sin β1L1� (1�Y2)sinh β1L1]/2,

N4 ¼ [(1þY2)cos β1L1� (1�Y2)cosh β1L1]/2,

N5 ¼ [(Y1�Y3)cos β1L1� (Y1þY3)cosh β1L1]/2,

N6 ¼ [(Y3�Y1)sin β1L1� (Y3þY1)sinh β1L1]/2,

N7 ¼ [(1�Y2)sin β1L1� (1þY2)sinh β1L1]/2,

N8 ¼ [(1�Y2)cos β1L1� (1þY2)cosh β1L1]/2,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(12)

and

T1 ¼
���EIa,1β22þMtdcω2

	
sin β2L2�

�
Mtd2c þ Jt

	
ω2β2 cos β2L2



,

T2 ¼
���EIa,2β22þMtdcω2

	
cos β2L2þ

�
Mtd2c þ Jt

	
ω2β2 sin β2L2



,

T3 ¼
��
EIa,2β22�Mtdcω2

	
sinh β2L2�

�
Mtd2c þ Jt

	
ω2β2 cosh β2L2



,

T4 ¼
��
EIa,2β22�Mtdcω2

	
cosh β2L2�

�
Mtd2c þ Jt

	
ω2β2 sinh β2L2



,

T5 ¼
���EIa,2β32þMtdcω2β2

	
cos β2L2þMtω2β2 sin β2L2



,

T6 ¼
��
EIa,2β32�Mtdcω2β2

	
sin β2L2þMtω2 cos β2L2



,

T7 ¼
��
EIa,2β32þMtdcω2β2

	
cosh β2L2þMtω2 sinh β2L2



,

T8 ¼
��
EIa,2β32þMtdcω2β2

	
sin β2L2þMtω2 cosh β2L2



:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(13)

The kth natural frequency Ωk of the ACR can be acquired by
solving Eq. (11) to seek the non-trivial solution. Then, substituting
Ωk back into Eq. (10) to seek the solutions of the coefficient
H = [A1, B1, C1, D1, A2, B2, C2, D2] yields the kth mode shape
fn(xn). Note that the coefficient H should be normalized through
the mass normalization process to determine the normalized mode
shape,

Ð L1
x1¼0ma,1(f1(x1))

2dx1þ
Ð L2
x2¼0ma,2(f2(x2))

2dx2

þMt(f2(L2))
2þ2Mtdcf2(L2)f

0
2(L2)þ Jt(f

0
2(L2))

2

" #
¼ 1: (14)

Subsequently, the modal superposition method is used to
derive the modal governing equation of the forced vibration of the
ACR. The relative transverse vibration of the beam can be
expressed as the summation of N truncated modes,

wa,n(xn, t) ¼
XN
k¼1

fn,k(xn)ηk(t) : (15)

Note that fn,k(xn) is the kth mass normalized eigenmode
(k ¼ 1, 2, . . . , N) for the beam section n. Based on the boundary
conditions [Eq. (10)], orthogonality relations can be derived by

Ð L1
x1 ¼ 0 ma,1f1,k(x1)f1,r(x1)dx1 þ

Ð L2
x2¼0 ma,2f2,k(x2)f2,r(x2)dx2 þMtf2,r(L2)f2,k(L2)

þMtdcf2,r(L2)f
0
2,k(L2)þMtdcf

0
2,r(L2)f2,k(L2)þ Jtf

0
2,r(L2)f

0
2,k(L2)

" #
¼ δkr ,

Ð L1
x1 ¼ 0 EIa,1

d4f1,r(x1)

dx41

df1,k(x1)

dx1
dx1 þ

Ð L2
x2¼0 EIa,2

d4f2,r(x2)

dx42

df2,k(x2)

dx2
dx2

�f2,k(L2)EIa,2
d3f2,r(x2)

dx32

����
x2¼L2

þdf2,k(x2)

dx2

����
x2¼L2

EIa,2
d2f2,r(x2)

dx22

����
x2¼L2

2
6664

3
7775 ¼ Ω2

rδkr ,

(16)

where Ωr is the natural frequency of the rth mode of the ACR.
Substituting Eq. (15) into Eq. (2), multiplying by f1,r(x1) and
f2,r(x2), integrating over each beam section, and applying Eq. (16) for
simplification, the modal equation of the jth ACR can be derived as

€ηr(t)þ 2ζa,rΩr _ηr(t)þΩ2
rηr(t) ¼ χr €w(~xj, t), (17)

where ζa,r is the introduced rth modal damping ratio. χr is expressed as

χr ¼
Ð L1
x1¼0ma,1f1,r(x1)dx1þ

Ð L2
x2¼0 (ma,2þMtδ(x�L2))f2,r(x2)dx2

�Ð L2x2¼0Mtdc
dδ(x2�L2)

dx2
f2,r(x2)dx2

2
64

3
75:

(18)

Dividing Eq. (17) by f2,r(L2), and letting ur(t) ¼ f2,r(L2)ηr(t)
yields

Mr€ur(t)þ Cr _ur(t)þ Krur(t) ¼ αrMr €w(~xj, t), (19)

where

Mr ¼ 1

f2
2,r(L2)

, Cr ¼ 2ζa,rΩr

f2
2,r(L2)

,

Kr ¼ Ω2
r

f2
2,r(L2)

, αr ¼ χrf2,r(L2):

(20)

Equation (19) shows that the ACR can be equivalently
represented as an equivalent lumped model. Notably, the con-
tinuous system represented by the ACR has an infinite
number of vibrational modes, thus yielding an infinite number
of SDOF systems with different parameters, where the sub-
script r denotes the rth mode. Additionally, a correction factor
αr should be introduced to correct the response of the lumped
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model. Since the natural frequency Ωr and mode shape
f2,r(L2) vary as different NCR λ are applied, it is worth
noting that all lumped parameters, including Mr, Kr, Cr, and
αr are λ-dependent. This is in contrast to Eq. (1), where only
the equivalent stiffness varies as λ.

B. Theoretical model of graded metamaterial with
ACRs

Based on the equivalent lumped model [i.e., Eq. (20)] for
the ACR, the graded metamaterial with ACRs shown in Fig. 1(a)
can be simplified as a graded metamaterial beam attached with
resonators represented by lumped models. The main objective of
this study is to achieve broadband vibration attenuation at low
frequencies. Theoretically, only the low-frequency bandgap, pre-
dominantly contributed by the first-order mode of the ACR (i.e.,
r = 1), should be taken into consideration. However, although
minimal, the influence of modes with r > 1 near the frequency Ω1

(i.e., the fundamental natural frequency of the ACR) cannot be
entirely disregarded as they may impact the prediction of the
bandgap, particularly its upper limit, which will be observed in
Sec. IV B. Here, the first three modes of the ACR (i.e., r = 1, 2, 3)
are included in the analysis. Therefore, based on Eq. (20), the
ACR is equivalent to a MDOF (Multi Degrees of Freedom) reso-
nator (three resonators in total). Figure 3 depicts the schematic
representation of the graded metamaterial integrated with the
equivalent MDOF resonator. 2s + 1 MDOF resonators are placed
on the host beam at a lattice constant d ¼ Lb/(2sþ 1), where the
first resonator is d/2 from the clamped end. That is, resonators
are placed in the middle of the unit cells. The jth ( j = 1,
2,…,2s + 1) MDOF resonator corresponds to the jth ACR pair,
which comprises three SDOF resonators corresponding to the
first three modes of the ACR. It should be noted that the three
SDOF resonators are conceptually attached to a shared point
located within a unit cell.

Since the lattice constant is sufficiently smaller than the
wavelength at low-frequency vibrations, the wave profile
between the two adjacent unit cells can be approximated by a
smooth function. Based on the averaging technique from the
homogenization method,51 it is reasonable to convert the con-
centrated reaction force of the SDOF resonator into a uni-
formly distributed force spaced by lattice constants, and its
accuracy in different frequency regions has been confirmed in
several works.52,53 Under this assumption, the flexural wave
propagation of the metamaterial beam attached with MDOF

resonators is governed by

EIb
@4wrel(~x, t)

@~x4
þ cIb

@5wrel(~x, t)

@~x4@t
þmb

@2wrel(~x, t)
@t2

¼ �mb€wb(t)þ
X3
r¼1

X2sþ1

j¼1

2Mr,jΩ
2
r,jur,j(t)δ(~x � ~xj), (21)

where wrel(~x, t) is the relative transverse motion of the host
beam, and wb(t) is the base excitation applied to the host beam.
Thus, the absolute displacement of the host beam is
w(~x, t) ¼ wb(t)þ wrel(~x, t). EIb ¼ Eb

bbh3b
12 and mb ¼ bbρbhb are the

bending stiffness and mass per length of the host beam, respec-
tively. Eb, bb, ρb, and hb are Young’s modulus, width, density, and
thickness of the host beam, respectively. c is the equivalent strain
rate damping coefficient, which can be expressed as c ¼ 2Ebζ i/ωi

with ζ i and ωi being the damping ratio and natural frequency of
the ith mode of the host beam. Mr,jΩ

2
r,jur,j(t) is the reaction force

term exerted by the rth SDOF resonator in the jth MDOF resona-
tor. Note that for the physical design, an ACR pair is placed sym-
metrically on either side of the host beam to maintain balance, as
shown in Fig. 1(a). Consequently, in Eq. (21), the reaction force
term should be doubled.

The motion equation of the rth SDOF resonator in the jth
MDOF resonator is

€ur,j(t)þ 2ζaΩr,j _ur,j(t)þ Ω2
r,jur,j(t) ¼ �αr,j

@2w(~xj, t)

@t2
, (22)

where the lumped parameters Ωr,j and αr,j in Eq. (22) will be deter-
mined by the grading strategies given in Sec. III C. Using the
modal superposition method, the relative transverse motion
wrel(~x, t) is given by

wrel(~x, t) ¼
XN
k¼1

Φk(~x)qk(t) : (23)

To avoid confusion with the symbols in the modeling of
ACRs, Φ(~x) and q(t) are used to represent the mode shape and the
modal coordinate of the host beam. Applying Laplace transform to
Eqs. (21) and (22), substituting the steady-state amplitude �ur,j and
Eq. (23) into the Laplace form of Eq. (21) multiplying by Φi(~x),
integrating over the host beam length from 0 to Lb, and then apply-
ing the orthogonality relations (

Ð Lb
0 mbΦk(~x)Φi(~x)d~x ¼ δki;Ð Lb

0 EIb
d4Φk(~x)
dx4 Φi(~x)d~x ¼ ω2

i δki), we can obtain the modal governing

FIG. 3. Schematic of the graded metamaterial with MDOF resonators.
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equation of the graded metamaterial,

�qi þ Pi
X3
r¼1

X2sþ1

j¼1

Pr,jΦi(~xj)
XN
k¼1

Φk(~xj)�qk

 !
¼ �f i, (24)

where

Pi ¼ ω2

ω2
i þ 2iωζ iωi � ω2

, Pr,j ¼
2αr,jMr,jΩ

2
r,j

Ω2
r,j þ 2iωζaΩr,j � ω2

, (25)

and

�f i ¼ Pi
mbacc
ω2

ðLb
0
Φi(~x)dx þ Pi

acc
ω2

X3
r¼1

X2sþ1

j¼1

Pr,jΦr(~xj): (26)

In addition, �qi is the modal coordinate amplitude, and
acc ¼ �€wb(t)/eiωt is the acceleration amplitude of the base excita-
tion. Rearranging Eq. (24) in the term of �qi gives

Cq ¼ F, (27)

where

C ¼

c11 c12 . . . c1m . . . c1N
c21 c22 . . . c2m . . . c2N
. . . . . . . . . . . . . . . . . .

ci1 ci2 . . . cim . . . ciN
. . . . . . . . . . . . . . . . . .

cN1 cN2 . . . cNm . . . cNN

2
666666664

3
777777775
q ¼

�q1
�q2
. . .

�qi
. . .

�qN

2
666666664

3
777777775
F ¼

�f 1
�f 2
. . .
�f i
. . .
�f N

2
666666664

3
777777775
(28)

and

ci,m ¼
1� Pi

P3
r¼1

P2sþ1

j¼1
Pr,jΦr(~xj)Φm(~xj) for m ¼ i,

�Pi
P3
r¼1

P2sþ1

j¼1
Pr,jΦr(~xj)Φm(~xj) for m = i:

8>>><
>>>: (29)

By solving Eq. (27), the modal coordinate vector q can be
obtained. Substituting the calculated q into Eq. (23) yields the
steady-state amplitude �wrel(~x) of the relative transverse vibration
wrel(~x, t). The transmittance of the graded metamaterial can be
obtained by

τ ¼ 20 log10
j�wrel(Lb)� acc/ω2j

j�acc/ω2j
� �

dB: (30)

In this work, s = 4, i.e., nine resonators are considered. The
geometric and material properties used are given in Table I.

III. TUNING STRATEGY FOR AGGREGATED BAND

An aggregated band refers to a vibration attenuation region
consisting of sequentially overlapped discrete bandgaps.54 This
study aims to create an aggregated band in the bending vibration of
the graded metamaterial beam by assigning different NCR λ in the
ACR shunt circuits according to a proper grading strategy. Before

presenting the grading strategy, the tuning characteristics of the
ACR by NC and the possible issues in implementing NC are first
discussed.

A. Tuning characteristics of ACR by NC

The effect of the NC circuit on the effective modulus Ep(ω) of
PZT has been widely studied.42,44 As the equivalent parameters of
the ACR are related to Ep(ω), it is necessary to briefly review how λ
affects the effective modulus of PZT. Using the parameters outlined
in Table I, Fig. 4 shows the normalized effective modulus of the
PZT patch for different λ. As λ varies, it is observed that for
0 < λ < 1, the effective modulus increases monotonically from the
open-circuit modulus Eoc

p to positive infinity, indicating that PZT
gets stiffer. On the other hand, for 1 < λ <∞, the effective modulus
starts from negative infinity and increases to the short-circuit
modulus Esc

p , implying that PZT gets softer. In other words, the
two NCR ranges, i.e., 0 < λ < 1 and 1 < λ <∞, correspond to the
stiff and soft zones, respectively. Notably, the effective modulus of
PZT becomes negative for 1 , λ , 1/(1� k231). Consequently, the
overall effective bending stiffness of the ACR may also become neg-
ative, particularly as λ approaches 1, causing the system to lose

TABLE I. Geometric and material properties of the proposed metamaterial.

Host beam
Material Steel
Length Lb 450 mm
Width bb 20 mm
Thickness hb 2 mm
Density pb 7860 kg/m3

Young’s modulus Eb 200 GPa
Lattice constant d 50 mm

ACR (beam part)
Material Aluminum
Length Ls 40 mm
Width b 4 mm
Thickness hs 0.8 mm
Density ρs 2700 kg/m3

Young’s modulus Es 69 GPa

ACR (tip mass block)
Material Steel
Length La 5 mm
Width ba 16 mm
Thickness ha 16 mm

ACR (PZT patch)
Material PZT-5H
Length L1 30 mm
Width b 4 mm
Thickness hp 0.5 mm
Density ρp 7500 kg/m3

Young’s modulus Esc
p 60.6 GPa

Permittivity εS33 2.5554 × 10−08 F/m
Piezoelectric constant d31 −2.74 × 10−10 C/N
Electromechanical coupling coefficient k31 0.3888
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stability. To prevent this, a constraint λ > 1.17 is set to ensure that
effective bending stiffness EIa,1 remains positive. Accordingly, the
region 1 < λ < 1.17 refers to the unstable zone (i.e., the solid black
line in Fig. 4).

Figure 5(a) shows the variation of the lumped parameters of
the ACR with different λ. For simplicity, only the first mode r = 1

of the ACR is considered. The modal damping ratio ζa,1 is assumed
to be 0.005. It is found that M, K, and C increase with increasing λ
in both the stiff and soft zones, except that the values decrease
drastically when crossing the unstable zone.

B. Analysis of practical issues in the implementation of
NC

Due to the active nature of NCs, some practical issues may arise
during the implementation process, potentially affecting the reliability
of the proposed ACR, and therefore, need to be specifically analyzed.
The primary consideration should be the stability of the system. The
stability of electro-mechanical systems with NC has been widely
studied.25,42 For composite beam structures with integrated PZT, it
should be ensured that all poles of the system are on the left side of
the Laplace domain. This constraint is satisfied as long as the effec-
tive bending stiffness of the composite segment is positive when
ω = 0,25 which leads to the two stable zones in Fig. 4 (0 < λ < 1 and
1.17 < λ <∞). It is worth noting that, in practice, a resistor is usually
connected in series or parallel to the NC to improve the circuit’s
robustness. To ensure that all poles are still on the left side of the
Laplace domain, a negative resistance value is needed in one of the
two stable branches of λ, depending on whether the series or parallel
configuration is used.25 In this case, it is recommended to use a pro-
grammable digital circuit to realize negative resistance.

In addition, for the analog circuit shown in Fig. 1(b) that
implements the NC, the connection of the +/− input pins of
OP-AMP is related to the value of λ. Specifically, the connection
shown in Fig. 1(b) applies to the case where 0 < λ < 1. When

FIG. 4. Effect of λ on the normalized effective modulus of PZT. Note that three
zones, i.e., stiff, soft, and unstable zones, are defined according to different λ.

FIG. 5. (a) Effect of λ on the lumped parameters of the ACR and (b) bandgap variation with the change of λ. Variation of bandgap width with the change of λ is also
plotted on (b).
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1.17 < λ <∞, the OP-AMP +/− input pins must be inverted to
maintain stability.42

Furthermore, recall that the OP-AMP shown in Fig. 1(b) is
assumed to be ideal. In practice, the circuit shown in Fig. 1(b) may
require additional electronic components to address the bias cur-
rents and offset voltages caused by the non-ideal OP-AMP.55 This
will make the NC circuit no longer pure NC but behave as an NC
connected to a parasitic inductor or resistor, causing the actual
impedance to deviate from the desired value. To demonstrate that
the proposed graded metamaterial system with ACRs remains effec-
tive in the presence of parasitic impedance, additional analyses
were performed. Using the parameters outlined in Table I, Fig. 6
shows the variation of the normalized effective modulus Ep(ω) of
PZT with frequency when the shunt circuit is the negative capacitor
series parasitic inductor. λ is fixed at 0.8 and the inductance L is
chosen as 0, 0.1, 30, and 50 H, respectively. It can be seen that for
pure NC (i.e., L = 0 H), Ep(ω) remains constant at different frequen-
cies. With the introduction of L, Ep(ω) gradually decreases to the
open-circuit modulus Eoc

p as the frequency increases, and this ten-
dency is more pronounced when L is large. This implies that if par-
asitic impedance is ignored, an inaccurate estimation of Ep(ω) will
prevent the natural frequency of the ACR from being adjusted to
the desired value. Fortunately, when L is small (e.g., L = 0.1 H), the
decrease in Ep(ω) is almost negligible, especially in the low-
frequency region, which is the frequency range of primary interest
in this paper. This suggests that the proposed system is practically
feasible as well. In addition, the effects of parasitic resistance will be
discussed in conjunction with the transmittance results of the
graded metamaterial system in Sec. V.

It is worth noting that the issues caused by the
OP-AMP-based analog circuits can be circumvented by digital cir-
cuits. Recently, some researchers have suggested using digital

circuits to design synthetic inductors, capacitors, and nonlinear
capacitors.56–58 The limitations of non-ideal OP-AMPs can be
broken by writing discretized transfer functions in microprocessors
to produce the same voltage-current characteristics as those under
the action of actual electronic components. In this way, one can
obtain the desired impedance.

C. Grading design

Note that the estimated bandgap edge frequency for the
uniform metamaterial attached with identical SDOF resonators is59

Ω1 , ω , Ω1

ffiffiffiffiffiffiffiffiffiffiffi
μþ 1

p
, (31)

where μ ¼ M/(mbd) is the mass ratio. Ω1 is the fundamental
natural frequency of the ACR since only the bandgap in low fre-
quency is considered. It is observed that the bandgap starts from
Ω1. Due to the correction factor α in Eq. (19), Eq. (31) requires a
modification, which is expressed as follows:

Ω1 , ω , Ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αμþ 1

p
: (32)

Based on Eq. (32), Fig. 5(b) displays the bandgap variation for
different λ. It is found that the bandgap in the stiff zone starts from
the resonance frequency of the ACR in the open-circuit condition
and shifts to a high frequency with increasing λ. The bandgap in
the soft zone starts from a low frequency and moves to the reso-
nance frequency of the ACR in the short-circuit condition when
λ→∞. It is noteworthy that the variation of bandgap width ΔΩ ¼
Ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αμþ 1

p � 1ð Þ has a similar trend for different λ. Specifically,
ΔΩ is significantly larger in the stiff zone than in the soft zone. In
particular, ΔΩ becomes pretty narrow λ→ 1.17 from the right side.
This is because the width of the bandgap depends on the additional
mass ratio [i.e., μ in Eq. (32)],59 while the equivalent mass M of
ACRs is larger in the stiff zone than in the soft zone. Based on the
above analyses, the grading profile of the proposed metamaterial
beam is proposed.

A convenient approach to construct a graded metamaterial is
to intentionally arrange the resonance frequency array of resonators
in ascending or descending order with a constant frequency
spacing. A dimensionless frequency spacing is defined as

δ ¼ Ω1,j � Ω1,sþ1

Ω1,sþ1( j� (sþ 1))
, (33)

where Ω1,j and Ω1,sþ1 is the fundamental natural frequency of the
jth and the (s + 1)th ACR, respectively, in which the (s + 1)th ACR
corresponds to the one mounted in the middle of the metamaterial
beam. From Eq. (33), it can be inferred that +/− signs of δ corre-
spond to the ascending/descending order of the natural frequency
array. Based on the selection of Ω1,sþ1 and δ, it can be found that
to achieve the desired natural frequency array of the ACR, either
the pure stiffening circuit (0 < λ < 1), the pure softening circuit
(1.17 < λ <∞), or the hybrid circuit is required. The following case
study will discuss the broadband vibration attenuation performance
of the metamaterial, considering the given grading profile.

FIG. 6. Variation of the normalized effective modulus of PZT with frequency for
the case of a negative capacitor in series with a parasitic inductor. λ is fixed at
0.8 and the inductance L is chosen as 0, 0.1, 30, and 50 H, respectively.
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IV. FINITE ELEMENT VERIFICATION

The purpose of this section is twofold: (1) to validate the
equivalent lumped model for ACR and (2) to validate the devel-
oped graded metamaterials with ACRs. The validation was per-
formed by the FE method.

A. Verification of equivalent lumped model

In this subsection, the ACR [Fig. 1(b)] is modeled by using
COMSOL Multiphysics. Recall that the primary purpose of this
study is to achieve a broad aggregated band within the low-
frequency range by utilizing the concept of graded metamaterials,
which heavily depends on the precision of tuning the ACR.
Establishing an accurate ACR model lays the solid foundation for a
dependable graded metamaterial model.

In the FE model of the ACR, one end is clamped, whereas the
other end attached with the tip mass block remains free. The piezo-
electric layer is implemented by the piezoelectric ceramic material
PZT-5H, and the electrode coverage is realized by the terminal
boundary condition. Use the circuit connections function in the
electrical circuit module to connect the negative capacitor to the
electrodes. A piezoelectric effect multiphysics module is imple-
mented to the ACR to couple mechanical and electrical domains. A
constant gravitational acceleration field, denoted as acc = 9.8 m/s2, is
applied to the ACR system. The geometric and material parameters
of the ACR are listed in Table I. The NC circuits connected to the
PZT patches are incorporated by the electrical module. Frequency
domain analyses are also performed. For the equivalent lumped
model, only the first mode of the ACR is considered for simplicity
[i.e., r = 1 in Eq. (19)]. Figure 7(a) compares the fundamental
natural frequency obtained from the FE and the lumped models for
ACR’s substrate of different lengths (i.e., Ls). Without loss of

generality, the NCR λ is set to zero (i.e., terminals of the PZT
patches are set to open circuit). The corresponding relative errors
(ΩTheo �ΩFE)/ΩFE are depicted in Fig. 7(a). The vibration modes
of the ACR for the cases of Ls = 40 and 70mm are superposed on
the plot. It can be found that the maximum relative errors remain
below 3.63%. As Ls increases, the accuracy of the equivalent
lumped model improves. Particularly, Ls = 80mm corresponds to
an error of 1.01%. Many factors may cause the increased errors as
the substrate of the ACR becomes shorter. For the relatively shorter
beam, the size of the tip mass block will be large relative to the
beam, which may lead to the incorrect estimation of the rotational
inertia of the mass block, and may also compromise the validity of
the mode shapes assumed in the theoretical model. Meanwhile, the
relatively large size of the tip mass block may also affect the plane
section assumption of the Euler beam. That is, the effect of shear
deformation and rotary inertia of the beam’s cross section may not
be negligible. To further illustrate, Fig. 7(b) compares the natural
frequency of the ACR predicted by the FE model and the equiva-
lent lumped model with Ls = 40 mm and varying sizes of the tip
mass block. The length, width, and height of the mass block are
multiplied by a scaling ratio to reduce the size of the tip mass
block. It can be seen that the natural frequency of ACRs gradually
increases as the mass block size decreases. Meanwhile, the relative
error gradually decreases (0.25% when the scaling ratio is 40%).

As mentioned in Sec. II, a relatively shorter beam is preferred
due to the use of PZT. Hereafter, Ls is fixed at 40 mm, and the size
of the tip mass block is not reduced (corresponding to an accept-
able error of 3.63%). Figure 8(a) examines the fundamental natural
frequency of the FE model and the equivalent lumped model as λ
varies. The constraints 0 < λ < 1 and λ > 1.17, respectively, corre-
sponding to the stiff and soft zones, are considered. The relative
errors (ΩTheo � ΩFE)/ΩFE are also depicted in Fig. 8(a). Positive

FIG. 7. Comparison of the fundamental natural frequency of ACRs predicted by the equivalent lumped model and the FE model in the cases of (a) varying the length of
the substrate of ACR Ls; (b) varying the size of the tip mass block and the length of the substrate of ACR being set to 40 mm.
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errors indicate that the fundamental natural frequency predicted by
the equivalent lumped mode is higher than that of the FE model,
while the reverse is true for negative errors. It can be seen that the
relative errors are positive when λ is far from the limit values l and
1.17. For this situation, the main error comes from the short beam
setting (i.e., Ls = 40 mm), as discussed in the analysis of Fig. 7(a).
Nevertheless, errors gradually change from positive to negative as λ
approaches the limit value (i.e., λ→ 1 from the left side x axis and
λ→ 1.17 from the right side x axis). In these cases, the fundamental
natural frequencies predicted by the equivalent lumped model tend
to be lower than that of the FE model in both the stiff and soft
zones. This phenomenon can be attributed to the overestimation of
capacitance CS

p by the piezoelectric constitutive equation [i.e.,
Eq. (5)], which assumes fully clamped constraints of PZT. In the
FE model, the capacitance of PZT is smaller than CS

p due to their
relatively loose constraints. According to the NCR λ ¼ �CN /CS

p
defined in Sec. II A, the same λ implies that the negative capacitor
value jCN j used in the FE model will be larger than actually
needed. As λ→ 1 from the left side of the x axis, the relatively
larger jCN j in the FE model contributes to a stiffer ACR, leading to
a higher predicted natural frequency. Conversely, when λ→ 1.17
from the right side of the x axis, the relatively large jCN j in the FE
model causes PZT to exhibit less softness compared to the equiva-
lent lumped model, resulting in a higher predicted natural fre-
quency for the ACR. Since the effective modulus change in PZT is
more significant around the limit value of λ, the difference in the
predicted natural frequency due to the misestimated capacitance
will be more significant. Consequently, the FE model predicts a
much higher natural frequency of the ACR, which leads to negative
relative errors. Hereafter, to ensure sufficient accuracy, the con-
straint values of λ = 0.98 and λ = 1.3 are chosen for the stiff and
soft zones, corresponding to errors of −1.2% and −3.7%,

respectively. To demonstrate more details, Fig. 8(b) presents the
admittance of the substrate’s tip of the ACR in the cases of λ = 0,
λ = 0.9, and λ = 1.3. The results from both the equivalent lumped
model and the FE model are plotted, where admittance based on
the equivalent lumped model can be calculated by

A(ω) ¼ 1
M

1

(Ω2 � ω2)
2 þ (2ζaωΩ)

2

" #
: (34)

The relative errors related to these three cases are also marked
in Fig. 8(b). From Fig. 8(b), it can be seen that the equivalent
lumped model provides a good estimation in terms of fundamental
natural frequency and displacement amplitude. As discussed
before, when λ approaches the limit values, the fundamental
natural frequency predicted by the FE model will be gradually
higher than that of the equivalent lumped model, thus changing
the error from positive to negative. This can be seen clearly in
Fig. 8(b) for λ = 1.3. For the case of λ = 0.9, the error is still positive
because λ is not close enough to the limit value 1.

B. Validation of metamaterial with MDOF resonators

After verifying the equivalent lumped model of the ACR, this
subsection aims to verify the model of the metamaterial with
MDOF resonators derived in Sec. II B. Recall that the first three
modes of the ACR are considered. That is, the MDOF resonators
consist of three SDOF resonators. In the FE model, the metamate-
rial consists of a steel beam with nine pairs of ACRs uniformly con-
nected on both sides of the beam. The setup related to the ACR has
been given in Sec. IV A. A base excitation is exerted on one end of
the host beam while the other is free. A constant modal damping
ratio ζ ¼ 0:005 is used for simplicity. The transmittance of the

FIG. 8. (a) Comparison of the fundamental natural frequency of ACRs predicted by the equivalent lumped model and the FE model with varying λ and the length of the
substrate of ACR Ls being set to 40 mm. (b) Comparison between the admittances calculated by the equivalent lumped model and the FE model for the cases of λ = 0,
λ = 0.9, and λ = 1.3. The relative errors corresponding to these three cases are also marked.
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metamaterial can be calculated by extracting the displacements at
the free and clamped ends of the host beam. In addition, to obtain
the band structure of the metamaterial in COMSOL, a unit cell
consisting of a beam segment with a pair of ACRs attached to the
middle of its sides is built. Floquet periodicity is applied to the
beam segment to satisfy Bloch’s theorem. One can obtain the band
structure by scanning within the Brillouin zone and calculating the
eigenfrequencies at different wave numbers. The geometric and
material parameters of the metamaterial are given in Table I.

We commence with verifying the uniform metamaterial
with identical MDOF resonators (i.e., δ = 0). For the case of λ = 0,
Fig. 9(a) compares the transmittances of the uniform metamaterial
obtained by the analytical and FE models. The transmittance of
0 dB is depicted in Fig. 9(a) as a reference (dotted black line),
where the range of the transmittance <0 dB is considered as the
bandgap. To demonstrate the accuracy of the transmittance
obtained by the FE method, Fig. 9(b) shows the band structure of
one lattice of the metamaterial calculated by FE. Bloch’s theorem is
applied to describe the periodicity. According to the definition
of the bandgap, the region between the two dispersion curves in
Fig. 9(b) corresponds to the bandgap (gray shading). It can be seen
that the gray area is consistent with the range where the transmit-
tance is <0 dB, as shown in Fig. 9(a).

To demonstrate the validity of the modification made in the
models, the result of the model that only considers the first mode
of the ACR, referred to as the metamaterial with SDOF resonators,
is depicted in Fig. 9(a). In addition, the transmittance obtained by
the metamaterial model without considering the correction factor α
in the equivalent SDOF model is also plotted in Fig. 9(a). For ease
of description, we have renamed these metamaterial models as
follows:

(1) Model A: Uniform metamaterial model with uncorrected
SDOF resonators.

(2) Model B: Uniform metamaterial model with corrected SDOF
resonators.

(3) Model C: Uniform metamaterial model with corrected MDOF
resonators (as proposed in Sec. II B).

Since Models A–C are all based on Euler beam theory, they
can only describe the bending modes. From Fig. 9(a), it can be
seen that the onset frequency of the bandgap predicted by Models
A–C is essentially the same, all of them differing slightly from that
predicted by FE, which can be attributed to the error in the model-
ing of ACRs. Recalling Eq. (31), we know that the onset frequency
of the bandgap predicted by Models A–C is equal to the natural
frequency of the mass-spring resonator. We also know that the
mass-spring resonator (i.e., the equivalent lumped model in this
paper) is a simplified model of the ACR, whose modeling error has
been discussed in detail in Sec. IV A. Therefore, the error in the
onset frequency of the bandgap is highly dependent on the model-
ing error of the ACR. Another evidence is that the relative errors of
the bandgap onset frequencies predicted by Models A–C are 3.64%,
3.69%, and 3.66%, respectively, which are very close to the model-
ing error of the ACR (3.63%) in Sec. IV A.

In contrast, the analytical results based on Models A and B
exhibit significant errors at the cutoff frequency of the bandgap.
The underlying reason is that, on the one hand, the correction
factor α, which corrects the reaction force of the ACR, only has a
notable impact on the cutoff frequency of the bandgap. On the
other hand, the dynamic behavior of the metamaterial is dominated
by the first-order mode of the ACR at frequencies below the first-
order resonance frequency of the ACR. However, higher-order

FIG. 9. (a) Transmittances of the
uniform metamaterial calculated by
analytical models A, B, C, and the FE
model for δ = 0 and λ = 0. Note that
this case corresponds to the uniform
metamaterial with the electromechani-
cal resonators in the open-circuit condi-
tion. (b) Band structure of the
metamaterial calculated by the FE
model for δ = 0 and λ = 0. The
selected vibration modes of the unit
cell are plotted.
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modes of the ACR begin to dominate at frequencies above the first-
order resonance frequency of the ACR, leading to errors in predict-
ing the cutoff frequency of the bandgap and the subsequent mode
peaks based on Models A and B. The relative errors in the bandg-
ap’s cutoff frequency predicted by Model C is 0.63%, reduced from
5.71% and 19.51% by Models A and B, respectively.

To get an insight into the vibration modes of the unit cell,
three intrinsic points, namely, S1, S2, and S3, are extracted and
presented in Fig. 9(b). The coupling between the bending vibra-
tion of the ACR and the host beam is observed in S1, resulting in
the generation of the bandgap. S2 and S3 correspond to the
lateral and torsional vibrations of the ACR, respectively, which do
not contribute to the opening of bandgaps. This justifies consid-
ering only its bending vibration in the modeling of ACRs in
Sec. II A. In addition, it should be noted that the higher-order
bending modes of the ACR also lead to bandgaps but are beyond
the scope of this paper due to their formation frequency at high
frequencies. Interested readers can use the proposed method to
analyze the bandgaps induced by the higher-order bending
modes of ACRs.

Throughout this paper, the theoretical model referred to as
Model C will be used. Figures 10 and 11 present the comparisons

of transmittances of the uniform metamaterial with resonators of
identical properties (δ = 0) obtained using both the theoretical and
FE models, considering different λ in the stiff and soft zones,
respectively. The band structures of the metamaterial regarding the
corresponding cases are also plotted for reference, in which the
blue shaded areas represent the bandgap. As anticipated, bandgap
tuning follows the same trend as depicted in Fig. 5(b): when λ falls
into the stiff zone, the bandgap shifts to higher frequencies and
widens with increasing λ; in contrast, when λ is within the soft
zone, the bandgap moves to lower frequencies and narrows with
decreasing λ. Figures 10 and 11 clearly illustrate a high consistency
between the theoretical and FE models.

Next, we validate the graded metamaterial. The fundamental
natural frequency of the ACR by the middle, f1,s + 1, is set at
130 Hz. Two different values of δ, namely, 0.02 and 0.08, are con-
sidered. The desired resonance frequency array associated with
ACRs can be determined according to Eq. (33). It should be noted
that for δ = 0.02, the desired resonance frequency array of ACRs
falls into the stiff zone. Consequently, the stiffening circuit is
employed. For δ = 0.08, the desired resonance frequency array
spans both the stiff and soft zones, implying the utilization of both
stiffening and softening circuits (the hybrid circuit). The calculated

FIG. 10. (a) Comparisons of transmittances of the uniform metamaterial with identical resonators (δ = 0) obtained by the theoretical and the FE models in the cases of dif-
ferent λ in the stiff zone. (b) Band structures of the metamaterial obtained by the FE model for the corresponding cases, where the bandgaps are shaded in blue.
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λ in the respective ACRs can be determined using Eq. (11), as
listed in Table II.

Figure 12 compares the transmittance of the graded metama-
terial calculated by the theoretical and FE models, which show
good agreement with each other. The transmittance of the uniform
metamaterial obtained from the theoretical model when δ = 0 and
the natural frequency of the ACR which is 130 Hz is also plotted in
Fig. 12 for comparison. It is observed that when δ is not 0, the
vibration attenuation range becomes wider. In addition, for larger
δ = 0.08, which implies a more dispersed array of resonance fre-
quencies of the ACRs, Fig. 12(b) shows that the vibration attenua-
tion region of the theoretical result is in general agreement with
that of the FE result, with slight discrepancies in the modal peaks
within the attenuation region, especially at higher frequencies. This

is due to the modeling error of the ACR. In particular, as λ8 and λ9
in the ACR array, which correspond to the stiffening circuit,
approach the limit value (λ = 1), this leads to an increase in the
modeling error of the ACR at high frequencies. As a result, an
increase in error at high frequencies can be observed in Fig. 12(b).

From Fig. 12(b), it can also be seen that the originally contin-
uous bandgap is split into multiple discrete bandgaps due to the
appearance of mode peaks within the attenuation region, the widest
of which can be referred to as the main bandgap, as shown by the
pink-colored region. For the discrete bandgaps in Fig. 12(b), it can
be noticed that they are not uniform in width, with the last few dis-
crete bandgaps being significantly wider than the previous ones.
This is because the effective mass of the ACRs under grading
varies, as discussed in Sec. III. To be specific, λ7, λ8, and λ9 in the

FIG. 11. (a) Comparisons of transmittances of the uniform metamaterial with identical resonators (δ = 0) obtained by the theoretical and FE models in the cases of differ-
ent λ in the soft zone. (b) Band structures of the metamaterial obtained by the FE model for the corresponding cases, where the bandgaps are shaded in blue.

TABLE II. Calculated NCR λ for the ACR array.

Case λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

δ = 0.02 0.766 0.798 0.821 0.843 0.859 0.872 0.885 0.899 0.908
δ = 0.08 1.739 0 0.498 0.766 0.859 0.908 0.936 0.955 0.968
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ACR array are closer to the limit value of 1 (as shown in Table II),
causing the effective mass of these ACRs to be significantly larger
than that of the others. Recalling Eq. (31), we know that the
bandgap becomes wider as the resonator mass increases. Therefore,
the seventh to ninth ACRs open wider discrete bandgaps.

Moreover, the vibration modes associated with the marked
mode peaks (S1, S2, S3, and S4) are exacted and depicted in
Fig. 12(c). It can be found that within the vibration attenuation
region induced in the metamaterial beam, a distinct pattern of
stress concentration, also called rainbow trapping, emerges.
Initially, the stress concentration is observed in the ACR pair
nearest to the clamped end of the host beam. As the frequency
increases, this stress concentration sequentially propagates to the
ACR pairs located toward the right end. These regions suffer
higher deformation and stress levels than the surrounding areas,
making the graded metamaterial suitable for broadband energy
harvesting.60 However, the large local deformation is undesirable
for effective vibration attenuation.

In summary, the preceding discussion thoroughly validates the
proposed graded metamaterial model, demonstrating its accuracy
and reliability. In the following study, we are dedicated to achieving
the optimal broadband attenuation performance of the graded
metamaterial in the low-frequency range by properly tuning the
ACRs via the grading strategy.

V. TUNING OF AGGREGATED BAND

This section commences with the effect of the parasitic resis-
tance mentioned in Sec. III B on the dynamic response of the
graded metamaterial. Building upon the findings from Ref. 54,

it was found that the resistance in the shunt circuit acts as electrical
damping (electro-damping, for short), which can flatten resonant
peaks within the attenuation region of the graded metamaterial.
Our previous study41 analyzed the complex band structure of pie-
zoelectric metamaterials in the case of piezoelectric shunt circuits
containing resistors and concluded that the imaginary part of wave-
numbers will not be zero between the neighboring bandgaps, cor-
roborating its ability to suppress localized resonance peaks. For a
resistor R in series with the NC, the impedance of the shunt circuit
is Z = 1/(iωCN) + R. Note that the equivalent lumped model given
by Eq. (19) is exclusively valid for a pure NC circuit, with real
parameters Mr, Kr, and Cr. However, the presence of R in the shunt
circuit yields a complex stiffness represented by real{Kr} + imag{Kr}.
Considering the complex form of Kr, the motion equation of the
resonator based on the equivalent lumped model is modified by

€ur,j(t)þ 2ζaΩr,j þ
ξr,j
ω

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Total damping

_ur,j(t)þΩ2
r,jur,j(t) ¼ �αr,j

@2w(~xj, t)

@t2
,

(35)

where ξr,j ¼ (imag{Kr,j})/Mr,j is the additional damping component
induced by the resistance. The term ξr,j/ω implies that electro-
damping is frequency-dependent. Equation (35) reveals that the
introduction of R contributes to the increase of the overall damping
of each resonator. Accordingly, Pr,j [Eq. (25)] is modified by

Pr,j ¼
2αr,jMr,jΩ

2
r,j

Ω2
r,j þ i(2ωζaΩr,j þ ξr,j)� ω2

: (36)

FIG. 12. Comparisons of transmittances of the graded metamaterial obtained by the theoretical and FE models with the case of (a) f1,s + 1 = 130 Hz and δ = 0.02 and
(b) f1,s + 1 = 130 Hz and δ = 0.08. Note that the transmittance of the uniform metamaterial obtained by the theoretical model is also plotted for comparison. Subfigure
(c) shows the vibration modes associated with the marked mode peaks S1, S2, S3, and S4 within the vibration attenuation region.
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In addition, an average transmittance is defined to characterize
the intensity of the vibrational attenuation bands in a specific fre-
quency range [ωl , ωu],

τavg ¼ 1
ωu � ωl

ðωu

ωl

τdω: (37)

Figure 13 compares the transmittances of the graded metama-
terial with R = 0Ω and R = 2 kΩ. The same f1,s + 1 and δ as in
Fig. 12(b) are used. The bandgap ranges for the cases of R = 0Ω
and R = 2 kΩ are colored gray (120–209.5 Hz) and blue (107.5–
239.5 Hz), respectively. A slight discrepancy between the theoretical
model and the FE model can be observed. Referring to the error
analysis in Fig. 9 in Sec. IV B, this discrepancy is due to modeling
errors using ACRs with a relatively short substrate length. In addi-
tion, it is found that the bandgap is broadened with R = 2 kΩ. This
is because when R = 2 kΩ, the resonant peaks are reduced to
varying degrees, and some to less than zero dB. Particularly, the
resonant peaks corresponding to the ACR pairs with λ far from its
limit value (i.e., inside the green-dotted box) reduce slightly than
those without resistance, suggesting that the additional electro-
damping is relatively small. Conversely, the resonant peaks associ-
ated with the ACR pairs with λ close to the limit (i.e., inside the
orange-dotted box) are almost flattened, indicating a significant
electro-damping effect. However, the valley in the orange-dotted
box undesirably disappears, signifying a diminished intensity of
vibration attenuation. Furthermore, it can be deduced that when
the resistance is too large, it opens the circuit, thus degrading the
graded metamaterial into a uniform metamaterial. Based on
Eq. (37), the average transmittance τavg within 107.5–239.5 Hz for
the cases of R = 0Ω and R = 2 kΩ are −21.5 and −16.4 dB, respec-
tively, implying that higher resistances broaden the attenuation
band while decreasing the attenuation intensity.

Several mode peaks in the FE result for the case of R = 2 kΩ
are labeled as S1, S2, S3, and S4 in Fig. 13, and the corresponding

mode shapes are shown in Fig. 14. It can be seen that the localized
modes of the metamaterial beam remain for small electro-damping
(i.e., S1 and S2), while the local modes disappear for large electro-
damping (i.e., S3 and S4).

To gain insight into how electro-damping is affected by λ,
Fig. 15 shows the variation of the electro-damping term ξ1,j for the
first mode of the ACR with respect to j, considering different
values of R. Two cases are considered. Case 1: f1,s + 1 = 130 Hz,
δ = 0.02, and Case 2: f1,s+1 = 105 Hz, δ = 0.08. The calculated λ in
Cases 1 and 2 are listed in Table III.

The results in Fig. 15 show that electro-damping ξr,j of the
ACR exponentially increases as λ→ 1 from the left side of the x
axis [i.e., j≥ 3 in Fig. 15(a), and j≥ 5 in Fig. 15(b)], and as
λ→ 1.17 from the right side of the x axis [i.e., j≤ 4 in Fig. 15(b)].
Recall that ξr,j ¼ (imag{Kr,j})/Mr,j. Therefore, the change in ξr,j can
be attributed to the effect of λ on the equivalent stiffness and mass
of the ACR, which shows a similar trend as λ approaches the limit,
as discussed in Sec. III. Furthermore, we can clearly see that the
larger R is, the larger ξr,j is, especially as λ is close to the limit.
Based on these previous results, it is reasonable to conclude that
the varying resistance is ideal in the ACR array of graded metama-
terials for better vibration suppression performance. When λ in the
ACR is far from the limit, a large resistance ensures sufficient
electro-damping to reduce the resonance peaks, and when λ
approaches the limit, a small resistance can avoid excessive weaken-
ing of the vibration suppression strength. The optimization method
proposed in our previous work39 can be used to determine the
optimal resistance value of each ACR. However, since this is not
the focus of this paper, a fixed R = 500Ω in series with the NC
circuit is set to ensure proper electro-damping.

To investigate the impact of different configurations of the NC
circuit on achieving an aggregated band when δ is varying, we con-
sider three cases: the softening circuit (Case 1), the stiffening
circuit (Case 2), and the hybrid circuit (Case 3). In Sec. IV, the ver-
ification process leads us to select appropriate values of λ for the
stiffening and softening circuits, namely, (0, 0.98) and (1.3, +∞),
respectively, These values correspond to the fundamental natural
frequencies of the ACR, which are (103.92 Hz, 184.19 Hz) and
(70.63 Hz, 97.84 Hz). For the grading strategy given in Eq. (33), it
is reasonable to set f1,s + 1 to the center frequency of the adjustable
range, i.e., 144, 84, and 127 Hz for Cases 1–3, respectively. Based
on the above scenarios, the thresholds of δ for Cases 1–3 should be
(0, 0.038), (0, 068), and (0, 0.110), respectively. Figures 16(a)–16(c)
display the evolution of the attenuation region, indicated by the
blue-colored area where transmittance is less than 0 dB, as the
grading coefficient δ varies.

Generally, the introduction of grading leads to a broader
aggregated band. However, the widening of the vibration attenua-
tion zone achieved through the grading ACRs based on the soften-
ing circuit (i.e., Case 1) is noticeably less effective than the other
two cases. This is attributed to the relatively large error under the
softening circuit, making the effective range of λ relatively smaller
(as depicted in Fig. 8), which restricts the adjustable bandgap range
available through the softening circuit.

In contrast, the hybrid configuration (Case 3) allows for a
wider range of attenuation zone adjustment because it combines
the natural frequency tuning range of the ACR in both the

FIG. 13. Compassion of transmittances of the graded metamaterial with
R = 0Ω and R = 2 kΩ for the case of f1,s+1 = 130 Hz and δ = 0.08.
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FIG. 15. Variation of the electro-damping term ξ1,j for the first mode of the ACR with respect to j with (a) Case 1 and (b) Case 2.

TABLE III. Calculated NCR λ of the ACR array in Cases 1 and 2.

Case λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

Case 1 1.739 0 0.498 0.766 0.859 0.908 0.936 0.955 0.968
Case 2 1.305 1.451 1.839 5.633 0.183 0.676 0.799 0.868 0.907

FIG. 14. The vibration modes associ-
ated with the marked mode peaks S1,
S2, S3, and S4 in Fig. 12.
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softening and stiffening cases, resulting in a broader aggregated
band. Figure 17 shows the transmittance of the graded metamate-
rial using the hybrid configuration with δ = 0.1. The case with
open-circuited ACR is also plotted for comparison. It is evident

that a wider aggregated band (indicated by pink area) in the
graded metamaterial, spanning 86.4–239.5 Hz, is 272.5% wider
than the reference case (101.6–142.7 Hz). Moreover, the effect of
δ on the average transmittance τavg over the frequency range of
interest (50–300 Hz is selected here) is investigated for different
configurations of the NC circuit (i.e., Cases 1–3), as shown in
Figs. 16(d)–16(f ). Specifically, Fig. 16(e) shows that τavg decreases
with increasing δ until it approaches a limiting value (approxi-
mately −8 dB) when δ > 0.024. Conversely, Figs. 16(d) and 16(f )
show a consistent decrease in τavg with increasing δ, indicating an
enhancement in vibration attenuation intensity within the 50–
300 Hz range. The limiting values are not reached in Figs. 16(d)
and 16(f ), probably because the range of λ is conservative in the
softening circuit. In addition, it is crucial to emphasize that
although the broadening of the vibration attenuation band is most
effective in Case 3 (the hybrid circuit), it does not possess the
highest level of attenuation intensity. To be precise, Case 2 exhib-
its the lowest τavg, whereas Case 1 has the highest. This is because
the attenuation band in Case 2 is located at a higher frequency. It
is known that the attenuation intensity of the bandgap gradually
increases as it moves to higher frequencies, which is why it is
more difficult to attenuate the vibration at lower frequencies. The
proposed metamaterial in this paper could be further refined by
integrating the adaptive function into the ACR through digital cir-
cuits. Such integration would facilitate automatic updating of the
grading pattern in response to the changes in ambient vibration
spectra, thereby effectively broadening the operational bandwidth
of the system.

FIG. 16. The vibration attenuation heatmaps with varying δ: (a) Case 1; (b) Case 2; and (c) Case 3. Evolution of the average transmittance over the frequency range of
interest with varying δ: (d) Case 1; (e) Case 2; and (f ) Case 3.

FIG. 17. Transmittances for the graded metamaterial using the hybrid configura-
tion with δ = 0.1. The transmittance for the metamaterial with open-circuited
ACRs (black dotted line) is plotted for comparison.
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VI. CONCLUSIONS

This paper presents a novel graded metamaterial that enables
effective vibration control across a wide range of low frequencies.
An actively controllable resonator array composed of piezoelectric
cantilever beams with tip mass blocks and connected to negative
capacitance circuits is mounted to the host beam. With a proposed
grading strategy, the ACR array can be finely tuned to the desired
grading pattern by modifying the NC of the shunt circuits. To
ensure accurate tuning, the ACR is first simplified to an equivalent
lumped model with a correction factor. The variation of the equiva-
lent parameters of the ACR with NC is investigated. It is found that
a significant change in the dynamic equivalent mass affected by
NC results in the expansion or shrinkage of the bandgap.
Subsequently, the effect of NC on bandgap tuning is corroborated
by a theoretical model and validated using a finite element model.
The theoretical and finite element results exhibit a high level of
agreement, except for cases where the NC is close to the limit
value, which arises due to the misestimation of the inherent capaci-
tance of the piezoelectric transducer. A reliable range of NC with
relative errors within 3.0% is suggested. After that, the impact of
bandgap widening under the grading pattern of the ACR array is
investigated. It is found that the grading strategy employing a stiff-
ening circuit enlarges the vibration attenuation zone more signifi-
cantly as compared to the softening circuit. However, the more
scattered bandgaps introduce wave localization when using the stiff-
ening circuit. An equivalent additional damping caused by the
resistance is derived to mitigate this effect, which exponentially
increases as the NC approaches the limit value. This additional
damping helps us significantly to alleviate wave localization. In an
optimal scenario with proper NC and resistance, it is demonstrated
that the graded metamaterial achieves a broadband vibration atten-
uation region in the low-frequency range, which is 272.5% wider
than that of the uniform metamaterial with open-circuited ACRs.
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